0:11 ÀÌ ¾ÆÀÌ´Â Á¦ Á¶Ä«ÀÔ´Ï´Ù.À̸§Àº ¾â¸®ÀÌ°í9°³¿ù ¹Û¿¡ ¾È µÆ¾î¿ä.¾â¸®ÀÇ ¾ö¸¶´Â ÀÇ»çÀÌ°í, ¾Æºü´Â ¹ýÁ¶ÀÎÀÔ´Ï´Ù.¾â¸®°¡ ´ëÇлýÀÌ µÉ ¶§ÂëÀ̸é¾â¸®ÀÇ ºÎ¸ð´ÔÀÇ Á÷¾÷Àº Áö±Ý°ú´Â È®¿¬È÷ ´Ù¸¦ °Ì´Ï´Ù. So this is my niece.Her name is Yahli.She is nine months old.Her mum is a doctor, and her dad is a lawyer.By the time Yahli goes to college,the jobs her parents do are going to look dramatically different.
0:26 2013³â¿¡ ¿Á½ºÆ÷µå ´ëÇп¡¼´Â Á÷¾÷ÀÇ ¹Ì·¡¿¡ °üÇØ ¿¬±¸Çß½À´Ï´Ù.ÇöÁ¸ÇÏ´Â Á÷¾÷ÀÇ Àý¹ÝÀÌ ¹Ì·¡¿¡´Â ±â°èµé¿¡ ÀÇÇØ ´ëüµÉ È®·üÀÌ ³ô´Ù´Â°á·ÐÀÌ ³µ½À´Ï´Ù.±â°è ÇнÀÀÌ ÀÌ º¯ÈÀÇ ´ëºÎºÐÀÇ ¿øÀÎÀÔ´Ï´Ù.ÀΰøÁö´É ºÐ¾ß¿¡¼ °¡Àå °·ÂÇÑ ºÐ¾ßÀÔ´Ï´Ù.±â°è ÇнÀÀº ±â°èµéÀÌ µ¥ÀÌÅ͸¦ ÅëÇØ ÇнÀÇÏ°íÀΰ£ÀÌ ÇÒ ¼ö ÀÖ´Â ÀÏÀ» ÀϺΠµû¶óÇÏ´Â °ÍÀ» °¡´ÉÄÉ ÇÕ´Ï´Ù.Á¦ ȸ»ç Ä«±ÛÀº ±â°è ÇнÀ °³¹ßÀÇ ÃÖ÷´ÜÀ» ´Þ¸®°í ÀÖ½À´Ï´Ù.ÀúÈñ´Â ¼öõ ¸íÀÌ ³Ñ´Â Àü¹®°¡µéÀ» ¸ð¾Æ¼Çаè¿Í »ê¾÷ÀÌ Á÷¸éÇØ ÀÖ´Â ¹®Á¦¸¦ ÇØ°áÇϵµ·Ï ÇÕ´Ï´Ù.ÀÌ ÀÏÀº ÀúÈñ¿¡°Ô ±â°èµéÀÌ ÇÒ ¼ö ÀÖ´Â °Í°úÇÒ ¼ö ¾ø´Â °Í±×¸®°í ¾î¶² Á÷¾÷ÀÌ ±â°è¿¡ ÀÇÇØ ´ëüµÉÁö ¾Ë ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. In 2013, researchers at Oxford University did a study on the future of work.They concluded that almost one in every two jobs have a high riskof being automated by machines.Machine learning is the technologythat's responsible for most of this disruption.It's the most powerful branch of artificial intelligence.It allows machines to learn from dataand mimic some of the things that humans can do.My company, Kaggle, operates on the cutting edge of machine learning.We bring together hundreds of thousands of expertsto solve important problems for industry and academia.This gives us a unique perspective on what machines can do,what they can't doand what jobs they might automate or threaten.
1:08 ±â°è ÇнÀÀº 1990³â´ë Ãʱ⿡ µîÀåÇß½À´Ï´Ù.Ãʹݿ¡´Â »ó´ëÀûÀ¸·Î °£´ÜÇÑ Àϸ¸ Çß½À´Ï´Ù.¿¹ÄÁ´ë ´ëÃâ ½ÅûÀÚµéÀÇ ½Å¿ë µî±ÞÀ» Æò°¡ÇϰųªÆíÁö ºÀÅõ¿¡ ¼Õ±Û¾¾·Î ÀûÈù ¿ìÆí¹øÈ£¸¦ Àд Á¤µµ¿´ÁÒ.Áö³ ¸î ³â µ¿¾È ±â°è ÇнÀ ºÐ¾ß¿¡¼´Â ȹ±âÀûÀÎ ¹ßÀüÀ» ÀÌ·ç¾î³Â½À´Ï´Ù.±× °á°ú, ±â°è ÇнÀÀ» ÅëÇØ ÈξÀ ´õ º¹ÀâÇÑ ÀÏÀ» ÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.2012³â¿¡´Â Ä«±ÛÀÌ ±â°è ÇнÀÀ» ÅëÇØ°íµîÇб³ ¿¡¼¼À̸¦ äÁ¡ÇÒ ¼ö ÀÖ´Â ¾Ë°í¸®ÁòÀ» ¸¸µå´Â ´ëȸ¸¦ ¿¾ú´Âµ¥¿ì½ÂÇÑ ¾Ë°í¸®ÁòÀÌ ¸Å±ä Á¡¼ö´Â ½ÇÁ¦ ¼±»ý´ÔµéÀ̸űä Á¡¼ö¿Í ÀÏÄ¡Çß½À´Ï´Ù.À۳⿡´Â ´õ ¾î·Á¿î ¹®Á¦¸¦ ³Â½À´Ï´Ù.´«ÀÇ »çÁø¸¸À» °¡Áö°í ´ç´¢º´¼º ¸Á¸·ÁõÀ»Áø´ÜÇÏ´Â °ÍÀ̾úÁÒ.´ëȸ¿¡¼ ¿ì½ÂÇÑ ¾Ë°í¸®ÁòÀº ¾È°ú ÀÇ»çµéÀÇ Áø´Ü°ú¶Ç °°Àº °á°ú¸¦ ³Â½À´Ï´Ù. Machine learning started making its way into industry in the early '90s.It started with relatively simple tasks.It started with things like assessing credit risk from loan applications,sorting the mail by reading handwritten characters from zip codes.Over the past few years, we have made dramatic breakthroughs.Machine learning is now capable of far, far more complex tasks.In 2012, Kaggle challenged its communityto build an algorithm that could grade high-school essays.The winning algorithms were able to match the gradesgiven by human teachers.Last year, we issued an even more difficult challenge.Can you take images of the eye and diagnose an eye diseasecalled diabetic retinopathy?Again, the winning algorithms were able to match the diagnosesgiven by human ophthalmologists.
1:56 ¿Ã¹Ù¸¥ µ¥ÀÌÅ͸¸ ÁÖ¾îÁø´Ù¸é ±â°è´Â Àΰ£º¸´Ù ÀÌ·± ÀÛ¾÷À»ÈξÀ ´õ ÀßÇÏ°Ô µÉ °Ì´Ï´Ù.¼±»ý´Ô ÇÑ ¸íÀº 40³â¿¡ °ÉÃÄ ¸¸ °³ÀÇ ¿¡¼¼À̸¦ Àаí¾È°ú ÀÇ»ç ÇÑ ¸íÀº 5¸¸ °³ÀÇ ´«À» Áø·áÇÒ ¼ö ÀÖ°ÚÁÒ.ÇÏÁö¸¸ ±â°è´Â °íÀÛ ¸î ºÐ ¾È¿¡ ¼ö¸¸ °³ÀÇ ´«°ú ¿¡¼¼À̸¦Áø·áÇÏ°í ÀÐÀ» ¼ö ÀÖ½À´Ï´Ù.Àΰ£Àº ÀÌ·¸°Ô ¹Ýº¹ÀûÀÌ°í ¹æ´ëÇÑ ¾çÀÇ ÀÛ¾÷À» ÇÏ´Â µ¥ À־â°è¸¦ ¶Ù¾î³ÑÀ» ¼ö ¾ø½À´Ï´Ù. Now, given the right data, machines are going to outperform humansat tasks like this.A teacher might read 10,000 essays over a 40-year career.An ophthalmologist might see 50,000 eyes.A machine can read millions of essays or see millions of eyeswithin minutes.We have no chance of competing against machineson frequent, high-volume tasks.
2:19 ÇÏÁö¸¸ Àΰ£¸¸ÀÌ ÇÒ ¼ö ÀÖ´Â Àϵµ ÀÖ½À´Ï´Ù.±â°èµéÀº »õ·Î¿î »óȲ¿¡ ´ëóÇÏ´Â ¹ýÀ»¾ÆÁ÷ ¹è¿ìÁö ¸øÇß½À´Ï´Ù.±â°èµéÀº Àü·Ê°¡ ¾ø´Â ÀÏÀº ó¸®ÇÏÁö ¸øÇÕ´Ï´Ù.±â°è ÇнÀÀÇ º»ÁúÀûÀÎ ÇÑ°è´Â¹æ´ëÇÑ ¾çÀÇ Àü·Ê¸¦ ÅëÇØ ÇнÀÇØ¾ß ÇÑ´Ù´Â °ÍÀÔ´Ï´Ù.Àΰ£µéÀº ±×·² ÇÊ¿ä°¡ ¾øÁÒ.¿ì¸®´Â °ü·ÃÀÌ ¾ø¾î º¸ÀÌ´Â ÁÖÁ¦µéÀ» À̾î¼Àü¿¡ º»Àû ¾ø´Â ¹®Á¦¸¦ Ç® ¼ö ÀÖ½À´Ï´Ù. But there are things we can do that machines can't do.Where machines have made very little progressis in tackling novel situations.They can't handle things they haven't seen many times before.The fundamental limitations of machine learningis that it needs to learn from large volumes of past data.Now, humans don't.We have the ability to connect seemingly disparate threadsto solve problems we've never seen before.
2:45 Æ۽à ½ºÆæ¼´Â Á¦2Â÷ ¼¼°è ´ëÀü ¶§ ·¹ÀÌ´õ¸¦ ¿¬±¸ÇÑ ¹°¸®ÇÐÀÚ¿´½À´Ï´Ù.±×´Â ¸¶±×³×Æ®·ÐÀÌ ÃÊÄݸ´À» ³ìÀÌ´Â °ÍÀ» ¹ß°ßÇÏ°í´ÂÀüÀڱ⠹æ»ç¼±¿¡ ´ëÇÑ Áö½Ä°ú¿ä¸®¿¡ ´ëÇÑ Áö½ÄÀ» ¿¬°áÇؼ¾Æ½Ã´Â ºÐÀÌ ÀÖÀ¸½ÅÁö ¸ð¸£°ÚÁö¸¸ ÀüÀÚ·¹ÀÎÁö¸¦ ¹ß¸íÇß½À´Ï´Ù. Percy Spencer was a physicist working on radar during World War II,when he noticed the magnetron was melting his chocolate bar.He was able to connect his understanding of electromagnetic radiationwith his knowledge of cookingin order to invent -- any guesses? -- the microwave oven.
3:02 ƯÈ÷³ª ´õ ³î¶ó¿î âÀÇ·Â ¹ßÈÖÀÇ »ç·ÊÀÔ´Ï´Ù.ÇÏÁö¸¸ ÀÌ·± È¥ÀçÀû âÀǼºÀ» ÇÊ¿ä·Î ÇÏ´Â »óȲÀº ¿ì¸®¿¡°ÔÇÏ·ç¿¡ ÀÚÀßÇÏ°Ô ¸îõ ¹ø¾¿ ÀϾ´Ï´Ù.±â°è´Â »õ·Î¿î »óȲ¿¡ ´ëóÇÏ´Â °Í¿¡¼´ÂÀΰ£À» ÀÌ±æ ¼ö ¾ø½À´Ï´Ù.ÀÌ·Î ÀÎÇØ ±â°è¿¡ ÀÇÇØ ÀÚµ¿È µÉ Àΰ£ÀÇ ÀÛ¾÷¿¡±Ùº»ÀûÀÎ ÇÑ°è°¡ Á¸ÀçÇÕ´Ï´Ù. Now, this is a particularly remarkable example of creativity.But this sort of cross-pollination happens for each of us in small waysthousands of times per day.Machines cannot compete with uswhen it comes to tackling novel situations,and this puts a fundamental limit on the human tasksthat machines will automate.
4:20 ±×·¯´Ï±î ¾â¸®¾ß, ³×°¡ ¹«½¼ ²ÞÀ» °¡Áöµç¸ÅÀÏ ¸ÅÀÏÀÌ »õ·Î¿î µµÀüÀ» °¡Á®´Ù ÁÖ±æ ¹Ù¶õ´Ù.±×·¸°Ô µÇ¸é ³×°¡ ±â°èº¸´Ù ¾Õ¼ ÀÖÀ» ¼ö ÀÖÀ»Å״ϱî. So Yahli, whatever you decide to do,let every day bring you a new challenge.If it does, then you will stay ahead of the machines.